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1 Introduction

PROV is a multivariate cryptography-based signature scheme, and its name stands for PRovable
unbalanced Oil-and-Vinegar. As many attacks on Multivariate Cryptography have been pub-
lished, the confidence in this alternative has been undermined. Consequently, we think it is highly
important to support such schemes with a security proof. Since the introduction of UOV, some se-
curity proofs appeared at PQCrypto 2011 by Sakumoto et al. [SSH11], and more recently by Kosuge
and Xagawa [KX24], who also provide a proof in the QROM. Here, we use another proof, which
is reminiscent of the security proof of the MAYO signature scheme due to Beullens [Beu22]. The
idea is to have a larger oil space than the output of the scheme. This variant is sometimes called
UOV-: it corresponds to the UOV scheme where some public equations have been removed. This
classical transformation is known as the ”Minus” method [Pat96] in the literature on Multivariate
Cryptography.

1.1 The UOV signature scheme

The Unbalanced Oil-and-Vinegar has been proposed by Kipnis, Patarin and Goubin in [KPG99]
about 25 years ago. It is a hash-and-sign signature scheme that follows the GPV framework [GPV08]
and its adaptation to multivariate cryptography in [KX24]. From a high level, the UOV algorithm
works with two sets of variables: o oil and v vinegar variables. The secret key consists in a tuple of
o random quadratic forms Q that does not involve any product between oil variables. This struc-
ture is hidden using a secret linear map T that mixes oil and vinegar variables. The public key P
is then the composition Q ◦ T. The signing procedure of a message msg is very simple: once the
vinegar variables are randomly fixed to some vector v, the system Q(v, o) = hash(msg) becomes
linear, and thus easy to solve. In the case where the linear system has no solution, the algorithm
simply restarts from the beginning.

1.2 Multivariate Cryptography (MQ)

The main advantage of MQ is to propose very short signature, despite the public key size is quite
large, compared to lattice-based schemes or MPC-in-the-head signatures. In this family, the most
secure signature scheme is the UOV scheme, which resists to attacks. However, as many attacks
have undermined the confidence in MQ, we propose a security proof for PROV.

1.3 Design rationale

Our goal in this document is to propose a provably secure variant of UOV. In [SSH11], the authors
present an UOV variant, dubbed SaltedUOV, whose EUF-CMA-security can be directly linked to the
probability of inverting an UOV public key. The main difference with the standard UOV construc-
tion is the use of a salt that is hashed alongside the message. In the case where, during the signing
procedure, the linear system of equations does not admit any solution, the salt will be resampled
instead of the vinegar variables. Even though this simple change makes the UOV scheme provably
secure, it can have significant drawbacks. Indeed, the running time of the signature algorithm is
now directly linked to the rank of the linear system of equations implied by the choice of v.

With PROV, our goal is to alleviate this problem. In order to do so, we increase the number
of oil variables beyond the number of public quadratic forms in such a way that the rank of the
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linear system of equations will be full with overwhelming probability1. This fact and our choice
of parameters ensure that the signature algorithm is unlikely to ever need more than one iteration
in order to output a signature.

We can summarize our design rationale as follows:

• simplicity: one of the main advantages of the UOV family of signature schemes is its sim-
plicity; the algorithms are easy to describe, understand and implement;

• provable security: PROV can be proven secure both in the classical and quantum Random
Oracle Model, and our choice of parameters is guided by the bound;

• signature size: multivariate cryptography is a good candidate for short signature schemes,
and PROV is no exception; it is important to note that we make some concession on the
signature size in order to attain provable security;

• reasonable public key size: we implement well-known optimizations to reduce the public
key size, which is arguably one of the weak points of multivariate cryptography;

• security beyond unforgeability: we incorporate a simple design tweak based on the BUFF
construction [CDF+21] in order to provide several advanced security guarantees (we refer
the reader to Section 3.2 for more information).

1.4 Organization of this document

Section 2 is a complete specification of PROV. Section 3 discusses the security of PROV, and de-
scribes our parameter set. Section 4 deals with implementation issues and possible optimizations.
Finally, Section 5 concludes by presenting advantages and limitations of PROV.

1.5 Known Answer Test values

Known answer test values (KAT) for PROV 1.2 are available on the PROV website:

prov-sign.github.io

2 Specification of PROV

2.1 Preliminaries and notations

Let F be the Galois field GF(28) with the irreducible polynomial x8 + x4 + x3 + x + 1. We denote
with bold lower-case letters vectors of elements of F. Unless otherwise stated, these will be column
vectors. Matrices will be denoted with bold upper-case letters. For any vector v or matrix M, we
denote with vT and MT their respective transpose.

Let X and Y be two sets, and let F be a function from X to Y . We denote by Img(F) the image
of F, i.e. the set of y ∈ Y such that there exists x ∈ X satisfying F(x) = y. When X is finite, we
denote with x ←$ X the sampling of x uniformly at random in X .

1 We can thus see PROV as a specific instance of SaltedUOV-.
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2.2 Parameter space

The main parameters involved in PROV are:

• λ the security parameter of PROV,

• m the number of equations in the public key,

• n the total number of variables,

• δ the difference between the number of oil variables and the number m of equations in the
public key,

• lenspk the length of the public key seed in bits,

• lenssk the length of the private key seed in bits,

• lensalt the length of salts in bits,

• H : {0, 1}∗ → Fm a hash function,

• H′ : {0, 1}∗ → {0, 1}lenhpk a hash function,

• an Extendable-Output Function Expand that takes as input a bitstring M ∈ {0, 1}∗ and a non-
negative integer d, and outputs a pseudo-random bitstring of length d. This will be used for
seed expansion. To indicate domain separation, a subscript is added: ExpandO, Expandpk are
two independent functions with the previous properties.

2.3 Key generation

We adopt the description of the UOV algorithm due to Beullens et al. [Beu21, BCH+23]. It relies
on an alternative key generation algorithm that compresses public keys without degrading the
security of the scheme that was developed in [PBB10, BPB10, PTBW11]. From a high level, the
public key consists in a multivariate quadratic map P : Fn → Fm that is identically zero on a
secret (m+ δ)-dimensional vector subspace O ⊂ Fn:

∀o ∈ O,P(o) = 0. (1)

The key generation algorithm starts with the choice of O under the form of a matrix
(

OT Im+δ

)T
whose columns form a basis of O. The matrix O = ExpandO(ssk) ∈ F(n−m−δ)×(m+δ) is generated
by deterministically expanding a uniformly random secret key seed ssk of length lenssk . The next
step consists in the sampling of the public quadratic map P = (p1, . . . , pm). Each quadratic form
pi can be uniquely represented by an upper triangular matrix Pi such that

∀x ∈ Fn, pi(x) = xTPix.

Each matrix Pi will be decomposed into three blocks P1
i ∈ F(n−m−δ)×(n−m−δ), P2

i ∈ F(n−m−δ)×(m+δ),
and P3

i ∈ F(m+δ)×(m+δ), such that

Pi =

(
P1

i P2
i

0 P3
i

)
,
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where both P1
i and P3

i are upper triangular. Condition (1) amounts to the fact that the following
matrix: (

OT Im+δ

)
Pi

(
O

Im+δ

)
= OTP1

i O + OTP2
i + P3

i

is symmetric, and its diagonal coefficients are 02. Once P1
i and P2

i are fixed, this condition uniquely
determines P3

i as this matrix is upper triangular. Hence, we can simply derive the coefficients of
P1

i and P2
i deterministically from a uniformly random public seed spk of length lenspk , and then

fix P3
i = Sym(−OTP1

i O−OTP2
i ), where Sym(M) is the unique upper triangular matrix such that

M + Sym(M) is symmetric and its diagonal coefficients are 0.

• The public key of PROV is pk = ({P3
i }i=1,...,m, spk, hpk), where hpk = H({P3

i }i=1,...,m‖spk)
stands for hashed public key, and is included for performance reasons. The symbol ‖ denotes
concatenation.

• The secret key of PROV is sk = (hpk, ssk).

In the following section, we will also describe an expanded private key that will make the
signature computation more efficient, in exchange for a larger key size. Overall, the size in bits of
a PROV public key is:

m(m+ δ)(m+ δ+ 1)
2

dlog2(|F|)e+ lenspk + lenhpk.

The size in bits of a secret key is:
lenssk + lenhpk.

A pseudocode description of key generation can be found in Algorithm 1.

Algorithm 1 Key generation algorithm.
1: procedure KEYGENERATION

2: ssk ←$ {0, 1}lenssk
3: spk ←$ {0, 1}lenspk
4: O← ExpandO(ssk)
5: (P1

i , P2
i )i=1,...,m ← Expandpk(spk)

6: for i = 1 to m do
7: P3

i ← Sym(−OTP1
i O−OTP2

i )

8: pk← ((P3
i )i=1,...,m, spk)

9: hpk← H′(pk)
10: sk← (spk, hpk, ssk)
11: return (pk, sk)

2.4 Signature computation

Let msg ∈ {0, 1}∗ be a message to be signed. The goal of the signature procedure is to find a vector
s ∈ Fn such that P(s) = H(hpk||msg||salt), where salt is a bitstring of length lensalt. It will be

2Recall that F is a field of characteristic 2. This would otherwise correspond to the matrix being skew-symmetric.
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computed as

s =

(
v
0

)
+

(
O

Im+δ

)
o (2)

with v ∈ Fn−m−δ, and o ∈ Fm+δ. The signature will then consist in the pair (salt, s), whose length
in bits is

ndlog2(|F|)e+ lensalt.

Note that, for i = 1, . . . ,m, one has

pi(s) = pi

((
v
0

))
+
(

vT 0
)
(Pi + PT

i )

(
O

Im+δ

)
o + pi

((
O

Im+δ

)
o
)

,

with pi

((
O

Im+δ

)
o
)
= 0 by construction. Hence, one gets

pi(s) = vTP1
i v + vT

((
P1

i + P1T
i

)
O + P2

i

)
o.

Overall, once v and salt have been fixed, computing the signature s of the message m corresponds
to solving the following system of linear equations:

vT
((

P1
1 + P1T

1

)
O + P2

1

)
o = h1 − vTP1

1v
...

vT
((

P1
m + P1T

m

)
O + P2

m

)
o = hm − vTP1

mv,
(3)

with (h1, . . . , hm) = H(hpk||msg||salt) ∈ Fm. This process can be repeated by sampling new salt
values until the system (3) admits solutions. Then, a vector o can be chosen uniformly at random
from the set of all solutions of (3). Note that, in order to speed up the computation, it is possible
to store the secret matrices Si =

(
P1

i + P1T
i
)

O + P2
i alongside the secret seed ssk. We refer to

esk = ((Si)i=1,...,m, spk, sk) as the expanded secret key esk, whose size in bits is

m(n−m− δ)(m+ δ)dlog2(|F|)e+ lenspk + lenhpk + lenssk .

A pseudocode description of this step can be found in Algorithm 2.
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Algorithm 2 Signature algorithm.
1: procedure SIGN(sk,msg)
2: (spk, hpk, ssk)← sk
3: O← ExpandO(ssk)
4: (P1

i , P2
i )i=1,...,m ← Expandpk(spk)

5: v←$ Fn−m−δ

6: repeat
7: salt←$ {0, 1}lensalt
8: (h1, . . . , hm)← H(hpk||msg||salt)
9: for i = 1 to m do

10: ti ← hi − vTP1
i v

11: ai ← vT
((

P1
i + P1T

i
)

O + P2
i
)

12: Av ← (ai)i=1,...,m
13: t← (ti)i=1,...,m
14: S← LinSolve(Av, t)
15: until S 6= ∅
16: o←$ S

17: s←
(

v
0

)
+

(
O

Im+δ

)
o

18: return (s, salt)

2.5 Signature verification

The signature verification simply consists in verifying that the equation P(s) = H(hpk||msg||salt)
holds. A pseudocode description of this step can be found in Algorithm 3.

Algorithm 3 Signature verification.
procedure VERIFY(pk,msg, sig)

((P3
i )i=1,...,m, spk)← pk

(P1
i , P2

i )i=1,...,m ← Expandpk(spk)
(s, salt)← sig
hpk← H′(pk)
h← H(hpk||msg||salt)
for i = 1 to m do

Pi ←
(

P1
i P2

i
0 P3

i

)
ti ← sTPis

return (ti)i=1,...,m
?
= h

2.6 Determinization

For ease of exposition, the above description presents a variant of PROV where various quantities
are sampled uniformly at random. In reality, all randomness is ultimately derived from the secret
seed and the message. In particular, PROV signatures are deterministic: the signature of a given
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message is always the same. We now explain in detail how the previous construction is made
deterministic.

2.6.1 Seed expansion

Public and secret seed expansion are computed using AES in counter mode (AES-CTR). In more
details, for (PROV-I, PROV-III, PROV-V), the public seed spk (resp. secret seed ssk) is of length
(128, 192, 256) bits respectively. It is used as key for (AES128, AES192, AES256), respectively. In
the following explanation, byte order for the initialization vector (IV) follows the NIST-specified
byte order for AES. The 9th byte (counting from 1) is reserved for domain separation: it is set
to a distinct value for each occurence of AES-CTR within PROV, specified below in each case.
The counter is incremented starting from the first byte of the IV. Note that this is not the default
behavior of AES-CTR in its NIST specification, which corresponds to the reverse byte order ; but
it is conform to the recommendations of the same document, which give some leeway for the
implementation of the counter. Since the matrices we generate are much smaller than 264, the
counter never spills over the domain separation byte, ensuring that each AES input for a given
seed is unique. For information about the order in which bits are inserted into each matrix, please
refer to Section 2.6.3.

1. For public seed expansion (Expandpk), we use AES reduced to four rounds. As in full-round
AES, the last round skips the MixColumns step. The matrices P1

i (resp. P2
i ) are generated

using successive outputs of AES-CTR reduced to four rounds, with the domain separation
byte set to 1 (resp 2). If the size of P1

i is not a multiple of 128 bits, the last AES output
is truncated, and leftover bits are carried over as the initial bits for the next matrix P1

i+1.
Leftover bits from the last matrix P1

m (resp. P2
m) are discarded.

2. For secret seed expansion (ExpandO), we use full-round AES. The matrices O is generated
using successive outputs of AES-CTR, with the domain separation byte set to 3. If the size
of O is not a multiple of 128 bits, the last AES output is truncated, and leftover bits are
discarded.

2.6.2 Hashing

All hash computations use SHAKE256, from now on writtenH, with a unique one-byte prefix for
domain separation.

1. The public seed is derived from the secret seed with the prefix 0: spk = H(0‖ssk).

2. The vinegar value v is as v = H(4‖ssk‖msg). The same SHAKE256 instance is then squeezed
to produce the initial oil value (used in LinSolve, as explained in Section 2.6.4), and finally to
produce successive salt values.

3. The hashed message h is computed as h = H(5‖hpk‖msg‖salt).

4. The hashed public key is computed as hpk = H(6‖{P3
i }i=1,...,m‖spk).
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2.6.3 Byte order in vectors and matrices

Bytes are read and written into vectors in the same order as they are produced by AES and
SHAKE256: the first byte output becomes the first coordinate of the vector. For matrices, bytes
are inserted in row-major order: that is, starting from coordinates (0, 0), and proceeding along
rows. The choice of inserting along rows is explained in Section 4.

2.6.4 Determinization of LinSolve

By design of PROV, the linear system computed during the signing process is expected to have
many solutions. The solution output by the signing algorithm is chosen uniformly among the
solution set. We now explain how this process is made deterministic.

As explained in Section 2.6.2, the message is used to derive deterministically the vinegar value
v, as well as an initial value for the vector o. LinSolve take this initial value as input, and will use it
as its random coins. In more detail, LinSolve solves the system by computing its row echelon form.
Then it uses back substitution to adjust the coefficients of initial oil value so that it is a solution of
the system; but it does so by only modifying the entries at positions corresponding to the leading
coefficients of the row echelon form. Note that those positions are uniquely determined, and so is
the corresponding modification of the coefficients. Also observe that if the initial oil value is uni-
formly random, the output solution is uniformly random among the solution set by linearity. This
solution was adopted because it is easy to implement, and does not depend on low-level details
of the linear solver. A more in-depth discussion of implementation aspects is offered in Section 4.

2.7 Parameter sets

Variant λ n m δ |seed| |salt| |hpk| |sig| |pk| |sk| |esk|
PROV-I 128 142 49 8 16 24 32 166 81045 48 237469
PROV-III 192 206 74 8 24 32 48 238 251894 72 752528
PROV-V 256 270 100 8 32 40 64 310 588696 96 1749728

Table 1: Parameter sets and corresponding key and signature sizes for the PROV signature scheme,
in bytes. The field size is always 256 bits. Although the security parameters are listed as (128, 192,
256) respectively, this should be understood in the sense of the NIST call: that is, they correspond
to a bit-security of 143, 207, 272 respectively.

3 Security analysis

3.1 Security proofs

Security models. In this document, we consider the standard Existential UnForgeability under
Chosen-Message Attack (EUF-CMA) notion for signature schemes. In this scenario, the adversary
gets a PROV public key, and has access to the corresponding signing oracle that can be queried at
most 264 times. Its goal is to generate a valid signature for a new message. Formally, one has the
following definition.

Definition 1 (EUF-CMA security). LetH be a random oracle, and letA be an adversary. The advantage of
A against the EUF-CMA security of a signature scheme S = (S.KEYGENERATION, S.SIGNH, S.VERIFYH)
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is defined as

AdvEUF-CMA
S (A) = Pr

[
S.VERIFY(pk,msg, sig) = > and S.SIGNH(sk, ·) was never queried on msg

]
,

where (pk, sk)← S.KEYGENERATION() and (msg, sig)← AH,S.SIGNH(sk,·)(pk).

In this section, we provide proofs that PROV is EUF-CMA-secure both in the Random Oracle
Model (ROM) and the Quantum ROM (QROM) as long as the UOV problem is hard to solve for
our choice of parameters. In the quantum setting, we will rely on a generic result from [KX24]. To
this end, it is necessary to introduce the notion of Preimage-Sampleable Function (PSF), as tailored
to the Multivariate Cryptography setting in [KX24].

Definition 2 (Weak Preimage-Sampleable Function (WPSF) [KX24]). A WPSF T consists of four
algorithms:

• GEN: this algorithm takes as input a security parameter and outputs a function F : X → Y with a
trapdoor I;

• F: this algorithm takes as input a value x ∈ X and deterministically outputs F(x);

• I = (I1, I2): the first algorithm takes no input and samples a value z ∈ Z ; the second one algorithm
takes as input z ∈ Z , y ∈ Y , and outputs x ∈ X such that F(x) = y, or outputs⊥ in case of failure;

• SAMPDOM: this algorithm takes as input a function F : X → Y and outputs x ∈ X .

The security of a WPSF is defined as follows.

Definition 3 (PS security [KX24]). Let T be a WPSF. The advantage of an adversary A against the PS
security of T is defined as follows:

AdvPST (A) =
∣∣∣Pr
[
PSA0 = 1

]
− Pr

[
PSA1 = 1

]∣∣∣ ,

where PS0 and PS1 are the games defined in Algorithm 4.

Finally, we define the INV game against a WPSF T as follows.

Definition 4 (INV security). Let A be an INV adversary against T, trying to inverse the public function
F. We define its advantage as

AdvINVT (A) = Pr [F(x) = y] ,

with (F, ·)← GEN(1λ) and y←$ Y , x ← A(F, y).

Hardness assumptions. The UOV problem has been well-studied since its introduction in 1999.
Over the years, multiple slight variants have been introduced. The mathematical problem that
underlies PROV is the well-known UOV- problem, and can be defined as follows.

Definition 5 (UOV- problem). Let P the quadratic map associated with a PROV public key pk. The UOV-

problem asks to find s ∈ Fn such that P(s) = t. More formally, the advantage of an adversary A against
the INV security of the UOV- is defined as

AdvINVUOV-(A) = Pr [P(s) = y] ,

where (pk, sk)← KEYGENERATION(), y←$ Fm, and P is the quadratic map corresponding to pk.
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Algorithm 4 Preimage sampling game.

1: procedure PSb
2: (F, I)← GEN(1λ)
3: b∗ ← ASampleb(F)
4: return b∗

1: procedure Sample1
2: xi ← SAMPDOM(F)
3: return xi

1: procedure Sample0
2: zi ← I1()
3: repeat
4: yi ←$ Y
5: xi ← I2(zi, yi)
6: until xi 6= ⊥
7: return xi

Note that the UOV- problem can also be recast as a an inversion (INV) problem for the following
WPSF, dubbed TPROV:

• the GEN algorithm corresponds to the key generation function;

• F is the evaluation of the public quadratic map;

• SAMPDOM samples a value in Fn uniformly at random;

• I corresponds to the pair (I1, I2) described in Algorithm 5.

One clearly has AdvINVUOV- = AdvINVTPROV
.

Algorithm 5 Algorithms I1 and I2 of the TPROV WPSF.

1: procedure I1

2: v←$ Fn−m−δ

3: return v
1: procedure I2(sk, v, y)
2: (spk, ssk)← sk
3: O← ExpandO(ssk)
4: (P1

i , P2
i )i=1,...,m ← Expandpk(spk)

5: for i = 1 to m do
6: ti ← yi − vTP1

i v
7: ai ← vT

((
P1

i + P1T
i
)

O + P2
i
)

8: Av ← (ai)i=1,...,m
9: t← (ti)i=1,...,m

10: S← LinSolve(A, t)
11: if S = ∅ then
12: return ⊥
13: o←$ S

14: s←
(

v
0

)
+

(
O

Im+δ

)
o

15: return s
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Classical security. The classical security of Hash-and-Sign with Retry was analyzed by a sub-
set of the PROV authors in [CFGM24]. Because the analysis is involved, we refer the reader
to [CFGM24] for a self-contained treatment, and cite here only the main result, and its applica-
tion to PROV. In order to state the result, it is useful to have condition expressing the fact that the
preimage-sampleable TDF (specifically, I2) does not return ⊥ too often. This is the purpose of the
following definition.

Definition 6 ([CFGM24]). We say that a preimage-sampleable TDF is ( f , ε)-well-behaved for the signa-
ture scheme if it satisfies the following properties:

• In the main loop of the real signature algorithm I2 returns~s 6= ⊥ with probability p = 1, or some
probability p ≤ 1/2, over the randomness of the salt.

• Except with probability ε, over the choice of v, i.e. the randomness of r1, p ≥ f .

Theorem 1 ([CFGM24], Theorem 1). Let T be a correct, ( f , ε)-well-behaved WPSF, and let HaST be
the instantiation of the Hash-and-Sign with Retry construction using T as the trapdoor. Let A be an
adversary against the EUF-CMA-security of HaST that issues at most qH random oracle queries, qsign
signature queries, and runs in time at most t. Then, there exists an adversary B against the PS-security of
T and an adversary C against its INV-security such that

AdvEUF-CMA
HaST

(A) ≤ AdvPST (B) + qε + qhAdv
INV
T (C) + 1

|Y|

+O
(

log( f−1)√
f
·
√

q
N

)
+ qe−Ω( f N).

where q = qH + qsign. Besides, B (resp. C) runs in time t′ = t +O (qsign + qh) (resp. t′′ = t + (qH +
qsign + 1)(tT + O(1)) where tT is an upper-bound on the running time to evaluate the TT.F function).
Moreover, B is allowed at most qh + qsign queries.

In order to apply Theorem 1 to PROV, the critical step is to find two real numbers f and ε such
that TPROV is ( f , ε)-well-behaved. Note that, during the computation of I2, the value of p is exactly

1
|F|m−r where r is the rank of the linear map Q(v, ·). Let us denote Mv ∈ Fm×(m+δ) the matrix of
the linear map Q(v, ·) for any v ∈ Fn−m−δ, and qi the i-th component of Q for i = 1, . . . , m.
By definition, it is clear that the j-th coefficient of the i-th row of Mv is exactly the coefficient of
xn−m−δ+j of qi(v, ·). More formally, this coefficient is equal to

n−m−δ
∑
k=1

αi
k,jvk, where qi(x) =

n−m−δ
∑
j=1

n

∑
k=j

αi
j,kxjxk.

It is clear that, if v is null, then the rank of Mv is 0. Otherwise, Mv is a uniformly random matrix
since the αi

j,k are uniformly random and independent. In order to accurately study the rank of Mv,
we rely on the following result.

Lemma 1 ([Lan95, Lev05]). Let n, N and r be three integers such that 1 ≤ r ≤ N ≤ n. One has

p(|F|, N, n, r) :=Pr [rank(A) = r]

=|F|(r−N)(n−r) ∏N
j=N−r+1

(
1− |F|−j)∏n

j=n−r+1
(
1− |F|−j)

∏r
j=1
(
1− |F|−j

) ,

where the probability is taken over the uniformly random choice of A in FN×n.
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Variant n m δ |salt| |sig| |pk| |sk| f log( f−1)/
√

f ε τ

PROV-I 142 49 8 24 166 81045 48 2−8 27 2−159 2−71

PROV-III 206 74 8 32 238 251894 72 2−16 212 2−263 2−71

PROV-V 270 100 8 40 310 588696 96 2−16 212 2−263 2−71

Table 2: Parameter sets and corresponding key and signature sizes for the PROV signature scheme,
in bytes. τ is an upper-bound on the probability that Mv is not full-rank.

Variant I III V
Alternative |salt| 9 14 18

New |sig| 145 214 282

Table 3: Alternative salt sizes (in Bytes) for PROV based on the application of Theorem 1. Updated
corresponding signature sizes (in Bytes) are provided for reference.

Combining our previous remark and Lemma 1, we get

Pr [rank(Mv) = r] =


1

|F|n−m−δ +
(

1− 1
|F|n−m−δ

)
1

|F|m(m+δ) if r = 0,(
1− 1

|F|n−m−δ

)
p(|F|, m, m + δ, r) if r = 1, . . . , m.

For any λ, let r0(λ) be the biggest r such that 2λ Pr [rank(Mv) < r] ≤ 1. In that case, TUOV-
δ

is(
1

|F|m−r0(λ)
, Pr [rank(Mv) < r0(λ)]

)
-well-behaved. Applying Theorem 1, we get the following re-

sult.

Corollary 1. Let A be an adversary against the EUF-CMA-security of PROV that issues at most qH
random oracle queries, qsign signature queries, and runs in time at most t. Then, there exists an adversary
B against the INV-security of TPROV such that

AdvEUF-CMA
PROV (A) ≤ O

(
(m− r0(λ)) log(|F|)|F|(m−r0(λ))/2

√
q

N

)
+ q Pr [rank(Mv) < r0(λ)] + qAdvINVTUOV

(B) + qe
−Ω

(
N

|F|m−r0(λ)

)
,

where q = qH + qsign, and N = 2lensalt . Besides, B runs in time t′ = t + (qH + qsign + 1)(tUOV + O(1))
where tUOV is an upper-bound on the running time to evaluate the TUOV.F.

In Table 2, we evaluate the security of PROV using the bound from Corollary 1. We remark
that our bounds could be used to reduce the lensalt parameter (although we choose not to do so).
This is presented in Table 3.

Remark 1. When r = rank(Mv) > 0, the expected number of salt sampling is |F|m−r. This means that
the signature algorithm may leak the value of r with a simple timing attack, depending on the probability τ
that Mv is not full-rank. Table 2 illustrates the fact that an adequate choice for δ can protect against such
attacks, as it is unlikely that PROV will ever need to sample an additional salt as long as qsign � 271.
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Post-quantum security. In this paragraph, we consider that the adversary has quantum access
to the underlying hash function, and classical access to its signing oracle. In this context, we will
rely on a generic result from [KX24]. To this end, we first recast PROV as an instantiation of the
Hash-and-Sign paradigm tailored to the UOV algorithm, as presented in Algorithm 1, composed
with a variant of the BUFF generic transformation where messages are always prefixed by a hash
of the public key.

Algorithm 6 The probabilistic HaS paradigm with retry.

1: procedure HaS[T,H].KEYGENERATION(1λ)
2: (F, I)← GEN(1λ)
3: return (F, I)

1: procedure HaS[T,H].VERIFY(F,msg, (salt, s))
2: return F(s) ?

= H(msg||salt)

1: procedure HaS[T,H].SIGN(I,msg)
2: v← I1()
3: repeat
4: salt←$ {0, 1}lensalt
5: s← I2(H(msg||salt))
6: until s 6= ⊥
7: return (s, salt)

One has the following generic theorem.

Theorem 2 ([KX24], Proposition 4.1). For any quantum EUF-CMA adversary A of HaS[T,H] issuing
at most qs classical queries to the signing oracle and qh quantum random oracle queries toH, there exist an
INV adversary B and a PS adversary C against T issuing qs sampling queries such that

AdvEUF-CMA
HaS[T,H] (A) ≤(2qh + 1)2AdvINVT (B) + AdvPST (C)

+
3
2

q′s

√
q′s + qh + 1
|R| + 2(qs + qh + 2)

√
q′s − qs

|R| ,

where q′s is a bound on the total number of queries to H in all the signing queries, and the running time of
B and C are about that of A.

As per [CDF+21], the BUFF transformation has no impact on the EUF-CMA security of the
transformed scheme (both in the classical and quantum setting). Hence, we can simply apply
Theorem 2 to PROV, as discussed in the proof of [KX24, Proposition 5.3]. Moreover, q′s > qs with
probability at most

qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
.

Thus, one gets the following corollary.

Corollary 2. For any quantum EUF-CMA adversaryA of PROV issuing at most qs classical queries to the
signing oracle and qh quantum random oracle queries toH, there exist an INV adversary B such that

AdvEUF-CMA
HaS[T,H] (A) ≤(2qh + 1)2AdvINVTPROV

(B)

+
3
2

qs

√
qs + qh + 1

2lensalt
+

qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
,

where the running time of B is about that of A.
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3.2 Resistance to known cryptanalysis

Direct attacks. In a forgery attack, the adversary tries to directly invert the public quadratic map.
We estimate the complexity of this approach as solving a uniformly random quadratic map from
Fn to m. In this case, the most efficient known algorithm is the so-called hybrid attack that tries to
guess k variables, and then attempts to inverse the resulting quadratic map, whose complexity is
given by the formula [BFP10]:

min
k

(
3|F|k

(
n− k + dreg

dreg

)2 (
n− k

2

))
,

where dreg is the smallest integer d so that the coefficient of zd in

(1− z2)n

(1− z)n−k

is non-positive. This estimate is based on the XL-Wiedemann solver. In order to get an accurate
evaluation of the hardness of solving this system, we rely on the automatic tool by Bellini et al.
in [BMSV22] that also includes other solvers.

Quantum direct attacks. We take into account the quantum version of the direct attack from [SW16,
FHK+17]. Its complexity for solving quadratic systems of e equations in e variables over F2 is
O(20.462e) quantum gates.

Moreover, we also consider the hybrid attack from the previous paragraph, where the search
part is accelerated using Grover’s algorithm. Its complexity is

min
k

(
3|F|k/2

(
n− k + dreg

dreg

)2 (
n− k

2

))
,

where dreg is defined as above.

Kipnis-Shamir attack. In this attack [KS98], the adversary tries to directly recover the oil space
by combining on two quadratic forms. This attack targeted the original UOV scheme, where n =
2m, and δ = 0. Since then, it has been extended to an attack with a complexity in Õ(|F|v−o), where
v and o respectively denote the number of oil and vinegar variables [KPG99]. In the case of PROV
and ignoring polynomial factors, this attack has a complexity of |F|n−2m−2δ.

Intersection attack. In this attack [Beu21], the adversary tries to recover k vectors in vector

spaces of the form Mi

(
O

Im+δ

)
∩Mj

(
O

Im+δ

)
, where Mi and Mj are the matrices of the polar

forms associated to the i-th and j-th components of the public quadratic map, and both matrices
are invertible. This attack essentially corresponds to solving a random system of(

k + 1
2

)2

o− 2
(

k
2

)
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equations in k(v + o)− (2k + 1)o variables. In the case of PROV, this corresponds to a system of(
k + 1

2

)2

(m+ δ)− 2
(

k
2

)
equations in m variables. We follow the strategy of [BCH+23] to find an optimal parameter k.

Security of the symmetric primitives. Our construction relies of symmetric primitives such as
keyed and unkeyed hash functions. No attack more efficient than brute force is known against the
chosen algorithms.

Side-channel attacks. While PROV was not specifically designed for resistance against side-
channel attacks, we expect it to provide a good level of security in such scenarios. Indeed, contrary
to the SaltedUOV construction, our choice of parameters implies that it is unlikely for the signature
algorithm to need more than a single salt sampling (it happens with probability ≈ |F|−δ−1). This,
along with the fact that signature generation and verification involve the evaluation of symmet-
ric primitives and linear algebra over F, will allow efficient masked implementations of PROV.
Moreover, as we reuse the field of AES, we can benefit from various masked implementation for
the multiplication.

Other attacks. In [CDF+21], Cremers et al. introduce the BUFF generic construction that, given
an EUF-CMA-secure signature schemes, builds a new signature algorithm that also satisfies the
following security notions:

• exclusive ownership [PS05]: a signature should verify only under a single public key;

• message-bound signature: a signature should only be valid for a single message;

• non re-signability [JCCS19]: one should not be able to produce a signature under another
key given a signature for an unknown message.

This transformation simply hashes the public key along with the message to be signed in the
signature generation and verification algorithm. Given the size of our public keys, this would
entail a significant performance overhead. Hence, we chose to instead rely on a hash of the public
key. Under the assumption that the underlying hash function is collision-resistant, this is sufficient
to guarantee the same additional security guarantees as the BUFF transformation.

3.3 Expected security of parameter sets

As seen in Section 3, PROV can be proven secure under the assumption that the UOV- problem is
hard to solve. This bounds the possible information leakage about the secret key by the signing or-
acle. Our parameter selection was in part guided by the bound from Corollary 1. More concretely,
we have the following criterion:

qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
+

qs(qh + qs)

2lensalt
. 1, (4)
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when qs ≤ 264 and qh ≤ 2λ. However, due to the (qs + qh + 1) factor in the reduction to the
UOV- inversion problem, we would need to ensure 2λ bits of security for the underlying INV
problem in order to provably guarantee λ bits of security for PROV. Since this would come with
a prohibitive performance cost, we chose to ensure at least λ bits of security for the underlying
INV problem. This seems reasonable as multivariate cryptography schemes have thus far never
been attacked through the information leakage of their signature algorithm. As far as quantum
security is concerned, Corollary 2 only provides asymptotic security for PROV. Hence, we rely
on the criterion from Equation (4) and on the analysis from Section 3.2. Concrete parameters for
NIST levels I, III and V can be found in Table 1.

3.4 Practical estimates

The analysis derived from the security proof in Section 3.3 mainly serves to choose the size of
δ, and the salt length, in relation to the proof. It remains to assess the practical performance of
the various attacks presented earlier in this section against our parameter choices. The results are
depicted on Figure 4.

The first two attacks are direct attacks. The system is solved either using the XL Wiedemann
algorithm, estimated using the same formula as in most UOV-based NIST submission, cf. Sec-
tion 3. We have also evaluated the complexity of other direct attacks using the automatic tool by
Bellini et al. [BMSV22]. The tool covers many attacks, but in all cases, the Hybrid F5 algorithm
achieves the best performance against the PROV parameters. We report its performance here. We
also note that it appears to slightly outperform the XL Wiedemann estimate commonly used as
reference in the UOV literature: integrating the Hybrid F5 estimator leads to PROV having more
conservative parameters. For both attacks, the value k in parenthesis shows the optimal number
of guessed variables for the algorithm.

The last two attacks are attacks against the UOV problem. We have been especially conser-
vative in our choice of parameters with regard to those attacks, since the hardness of the UOV
problem is not as well-established as the hardness of the MQ problem. For the intersection attack,
the value of k indicates the optimal number of intersected spaces. Furthermore, note that any
distinguishing attack against PROV implies a distinguishing attack against an UOV system with
m equations in n+ δ variables, since the PROV public key gives strictly less information to the
attacker (it contains δ fewer equations relative to the corresponding UOV public key), and PROV
signatures provably leak no information (Section 3). We have chosen PROV parameters such that
the corresponding UOV problem is difficult. This means that any attack against PROV implies an
attack against UOV with parameters that are considered secure by the sate of the art.

PROV-I PROV-III PROV-V
λ 128 192 256

XL-Wiedemann 151.7 (k = 2) 216.6 (k = 5) 281.8 (k = 6)
Hybrid F5 145.6 (k = 2) 209.9 (k = 3) 274.7 (k = 6)

Kipnis-Shamir 245.3 358.4 455.2
Intersection 151.5 (k = 3) 249.7 (k = 2) 311.5 (k = 2)

Table 4: Complexity of the main attacks against PROV.
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4 Implementation and performance

4.1 Implementation techniques

HP-PROV [Ryc24] is the library designed for efficiently implementing PROV in C programming
language, and is used as optimized implementation exploiting the AVX2 instruction set. This li-
brary is distributed under the GNU Lesser General Public License, version 3 or later, and was
implemented by the last author. Here, we reveal the fundamental techniques used in HP-PROV
to product an efficient implementation immune against timing attacks (except the number of it-
erations in the repeat loop of the signing process). Except the AVX2 instruction set, we also use
the PCLMULQDQ instruction for computing the dot product over GF(28) (Section 4.1.3), and
optionally the BLSI instruction (Section 4.1.7) from the BMI1 instruction set. We use the AESKEY-
GENASSIST, AESENC and AESENCLAST instructions from the AES-NI instruction set only to
significantly speed up the seed expander based on AES in counter mode. In certain sections, we
also study the possibility of using other implementations depending on the target architecture.

4.1.1 Overview

In PROV, we make the choice of storing multivariate quadratic equations one by one. Here, we
study how to efficiently implement linear algebra operations with this format. The choice of the
format is crucial for the performance of the implementation, and we think that efficient implemen-
tations for each format should be compared in order to determine the best format. In particular,
we could consider the monomial representation [CLP+17], i.e. when terms of each equation are
stored together. An efficient implementation for this format could be proposed in the future.

Then, for 1 6 i 6 m, we make the choice of storing P1
i , P2

i , P3
i , Si, O in the row-major order.

Intermediate matrices are also stored in the row-major order. The P1
i and P3

i matrices are upper
triangular where the null lower triangular part is not stored. We note that the storage of P1

i also
provides P1T

i , a lower triangular matrix stored in the column-major order.
Now, we show how we perform the linear algebra part of cryptographic operations. For the

keypair generation, for 1 6 i 6 m, we compute Q ← P1
i O + P2

i , then P3
i ← Sym(OTQ). If the

secret-key is expanded, then we compute Si ← P1T
i O + Q, and we replace Q by Si in the three

steps, i.e. we use the memory zone of Si to store intermediate results. The symmetrize operation
of the square matrix OTQ ∈ F(m+δ)×(m+δ) is detailed in Section 4.1.5. When we perform a matrix
product, for each row of the left operand, we multiply each component by the corresponding row
of the right operand. To do it, we use multiplication lookup tables by a scalar. We can directly
load the table from the scalar if the left operand is public, which is true for P1

i and its transpose.
For the product of OT by Q, the left operand is secret. However, OT is used for m matrix prod-
ucts. Therefore, we can precompute the multiplication table for each coefficient of OT (without
computing the transpose of O), then use them to speed up m matrix products. We refer to Section
4.1.4 for further details.

For the signing process, for 1 6 i 6 m, we compute ti and ai with four vector-matrix products
and one dot product, as follows.

1. w = vTP1
i ,

2. ti ← hi −wv,

3. ai ← vTP2
i ,
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4. w← w + vTP1T
i ,

5. ai ← ai + wO.

If the secret-key is expanded, we merge Steps 3, 4 and 5 by computing ai ← vTSi, which saves
two vector-matrix products. The secret vector v is used for 3m vector-matrix products. Therefore,
for each component of v, similarly to the matrix products, we can precompute the multiplication
lookup table by this element, in order to speed up the multiplication of each component of v by
the corresponding row of the matrix. However, P1T

i is stored in the column-major order, so we
cannot use this strategy without computing the transpose. For the constant-time computation of
o ←$ LinSolve(Av, t), we refer to Sections 4.1.6 and 4.1.7. The linear solver requires inverting
elements of GF(256)×, which is detailed in Section 4.1.2. It also requires computing dot products,
which is detailed in Section 4.1.3. Finally, the computation of v + Oo is performed as v + oTOT.
Once again, we cannot use multiplication lookup tables without computing the transpose of O.

For the verifying process, for 1 6 i 6 m, we set v, o← s, and we compute ti with three vector-
matrix products and one dot product, as follows: ti ← (vTP1

i , vTP2
i + oTP3

i )s. Here, v and o are
public vectors. So, the multiplication lookup tables can be loaded from the components of v and
o in order to speed up their multiplication by the corresponding row of each matrix.

In Section 4.1.8, we present some minor changes which improve the performance, such as
multiplying a vector by two matrices during the signing and verifying processes.

4.1.2 Modular inverse in GF(256)×

During the Gauss-Jordan elimination (Section 4.1.6), we need to multiply the pivot row by the in-
verse of the pivot, before using it for the elimination step. The pivot is a secret data and has to be
inverted in constant-time to prevent timing attacks. Several methods can be used for computing
the inverse of the pivot: the constant-time lookup in an inversion table, the exponentiation algo-
rithm, and the constant-time extended Euclid-Stevin algorithm [BY19]. In the optimized imple-
mentation, we perform the constant-time lookup in an inversion table. The inversion table takes
the element to invert as index, and returns its inverse. We set the inverse of zero to any value dif-
ferent from zero (e.g. the field polynomial modulo x8) because of a specificity of the constant-time
Gauss-Jordan elimination. The latter requires that the pivot row is multiplied by a value different
from zero for keeping the same solutions.

Now, we present several inversion algorithms. The choice of the most efficient inversion
method depends on the target architecture.

Constant-time lookup. With the AVX2 instruction set, the constant-time lookup in an inversion
table is the most efficient method. We load the table of 256 bytes with only 8 calls to the load
instruction. We apply a mask on the loaded values in order to set to zero the seven 256-bit data
which do not contain the inverse, then we accumulate them (with a logical OR). Once the accu-
mulator is computed, we use the VPSHUFB instruction to extract the byte containing the inverse.

Constant-time extended Euclid-Stevin algorithm. In the polynomial basis of GF(28), each el-
ement A is a degree-7 binary polynomial. We can compute the inverse of A modulo the field
polynomial f with the extended Euclidean algorithm, which computes a Bezout relationship be-
tween A and f : Au + f v = gcd(A, f ) = 1, with u, v ∈ GF(2)[x]. The Bezout coefficient u is the
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inverse of A in GF(28). For computing the Bezout coefficient u in constant-time, we can use a
variant: the extended Euclid-Stevin algorithm [BY19]. We propose Algorithm 7, which is an im-
plementation in C programming language of [Ryc21, Algorithm 53], coupled to [Ryc21, Remark
25], and by adding the computation of the Bezout coefficient u. We refer to [Ryc21, Section B.8]
for further details. We note that this implementation can easily be adapted to 16-bit processors. In
fact, we use 32-bit registers only to compute two 16-bit instructions via one 32-bit instruction. The
operations applied on a or b have to be applied on their Bezout coefficient.

Exponentiation algorithm. Based on Fermat’s little theorem, the inverse of A ∈ GF(256)× is
equal to A254. The way of raising A to the power of 254 is defined by the so-called addition chain
[IT88]. An addition chain of a positive integer n is a list of integers such that the last integer is
n, and each integer can be computed by adding two integers which precede it in the list. In the
exponentiation algorithm, these integers correspond to the powers of A which are computed. The
addition chain is not unique and impacts the performance. For computing A254, we recommend
the following addition chain: (1, 2, 3, 6, 7, 14, 15, 30, 60, 120, 240, 254). The corresponding computa-
tion of A254 is the following:

1. A2 = A2,

2. A3 = A2 × A,

3. A6 = (A3)2,

4. A7 = A6 × A,

5. A14 = (A7)2,

6. A15 = A14 × A,

7. A240 = (A15)
24

,

8. A254 = A240 × A14.

With this addition chain, the inversion algorithm requires 4 field multiplications, 3 field squar-
ings and one step of multi-squaring (computing 4 successive squares). If the target architecture
has an instruction for computing the multiplication in GF(256), this method requires at most 11
calls to this instruction. Otherwise, this addition chain is interesting because it allows to compute
(A15)24

with a multi-squaring table, depending only on the field representation of GF(256). More-
over, three of the four multiplications takes A as right operand. This allows to perform a step of
precomputation about A to compute more quickly these multiplications.

We also recommend a similar addition chain: (1, 2, 3, 6, 12, 14, 15, 30, 60, 120, 240, 254). The cor-
responding computation of A254 is the following:

1. A2 = A2,

2. A3 = A2 × A,

3. A12 = (A3)22
,

4. A14 = A12 × A2,
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Algorithm 7 32-bit implementation in C programming language of the inversion in GF(28) via the
extended Euclid-Stevin algorithm. The field polynomial is b = x8 + x4 + x3 + x + 1.

1: uint8 t inv xes cb gf256 32(uint8 t A)

2: {
3: uint32 t au,bq,delta,sw,mask lc a;

4: uint8 t i;

5: /* maxdeg(A)-deg(b) */

6: delta=-1;

7: /* (a<<1)||(u<<1), u=1, we multiply a and u by x^-delta, i.e. x */

8: au=(((uint32 t)A)<<17)|2;

9: /* b||q, q=0 */

10: bq=((uint32 t)0x11b)<<16;

11: /* maxdeg(A)+deg(b)=15 */

12: for(i=0;i<15;++i)

13: {

14: mask lc a=-(au>>24);

15: /* if lc(A)==1 and delta<0, we swap operands (before the elimination) */

16: sw=mask lc a&(-(delta>>31));

17: delta^=(delta^(-delta))&sw;

18: --delta;

19: /* elimination of the degree-8 term of a: new a=a*b 8+b*a 8 */

20: /* necessary, b 8=1, and the missing swap does not impact the result */

21: au^=bq&mask lc a;

22: /* achieve the conditional swap between a and b */

23: /* note that sw!=0 implies mask lc a!=0 */

24: bq^=au&sw;

25: /* multiplication by x (alignment of leading terms) */

26: au<<=1;

27: }

28: /* division by x^8, where 8 is max(deg(A),deg(0x11b)) */

29: return (uint8 t)(bq>>8);

30: }
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5. A15 = A12 × A3,

6. A240 = (A15)
24

,

7. A254 = A240 × A14.

With this addition chain, we use only one field squaring but 2 steps of multi-squaring. The right
operand of the multiplications changes but the dependencies between the operations is lower.

Square-and-multiply exponentiation algorithm. We can also compute the inverse of A ∈ GF(256)×

as A254 with the classical square-and-multiply exponentiation algorithm. To do it, initialize B to
A and perform six times B ← B2 × A, then return B2. This method is more expensive than the
previous one, because it requires 6 field multiplications and 7 field squarings. However, squaring
is linear so we can include the squaring step in a lookup table of multiplication by A. Thus, we
introduce the square-and-multiply lookup table, which computes the square followed by the multi-
plication by A. For example, we can generate the lookup table of each element of the polynomial
basis of GF(256): we successively compute A, Ax2, Ax4, Ax6, Ax8, Ax10, Ax12, Ax14 in GF(256), by
computing Ax2i as (Ax2i−2)× x2 for 1 6 i 6 7. Then, for B ∈ GF(256), B2 × A can be computed
by computing the dot product of the vector of the eight previous values by the bits of B. Note that
this method can also be used to compute the square (or repeated squares), with the possibility
of precomputing 1, x2, x4, x6, x8, x10, x12, x14 in GF(256) for a fixed field polynomial. Note that we
could also consider the use of the PSHUFB instruction (defined in Section 4.1.4) coupled to two
16-byte square-and-multiply lookup tables.

4.1.3 Dot product over GF(28)

In this section, we use the PCLMULQDQ instruction, which performs a 64-bit carry-less multipli-
cation. It computes the product of two binary polynomials such that their degree is strictly less
than 64. Inputs and output are 128-bit registers, and only half of each input is used.

In [Ryc21, Section 9.5.1], a trick based on PCLMULQDQ allows to perform the multiplication
of degree-one polynomials whose coefficients are degree-20 binary polynomials. In particular, this
trick allows to perform two multiplications of degree-20 binary polynomials with one call to the
PCLMULQDQ instruction. However, the format of the output is efficient only for the accumu-
lation of products, e.g. for the dot product of binary polynomials. In this section, we adapt this
trick to perform the multiplication of degree-three polynomials whose coefficients are degree-7
binary polynomials. Then, we remark that the degree-three term of the result is a dot product of
the coefficient vectors of the inputs (the order of coefficients is reversed for one of the inputs).

Here, we consider the polynomial basis of GF(28), allowing to write each element as a degree-7
binary polynomial. Let u = (u0, u1, u2, u3, u4, u5, u6, u7) and v = (v0, v1, v2, v3, v4, v5, v6, v7) be two
vectors of 8 degree-7 elements of GF(2)[x]. We perform the dot product of u and v with only two
calls to the PCLMULQDQ instruction. To do it, we start by reversing the order of 16-bit blocks of
one of both 64-bit vectors, for example u. We obtain u′ = (u6, u7, u4, u5, u2, u3, u0, u1). Then, for
both vectors, we use 16-bit block shifts to perform:

• u′e ← (0, u6, 0, u4, 0, u2, 0, u0),

• ve ← (0, v0, 0, v2, 0, v4, 0, v6),
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• u′o ← (u7, 0, u5, 0, u3, 0, u1, 0),

• vo ← (v1, 0, v3, 0, v5, 0, v7, 0),

and we compute pe ← PCLMULQDQ(u′e, ve) and po ← PCLMULQDQ(u′o, vo). Here, the operands
of PCLMULQDQ are considered as degree-63 binary polynomials, which is equivalent to consider
the dot product of each operand with (1, x8, x16, x24, x32, x40, x48, x56). Then, the multiplication of
binary polynomials is performed. Thanks to the null coefficients in u′e, ve (respectively u′o, vo), the
coefficients of pe from x64 to x79 (respectively of po from x48 to x63) correspond to the dot product
of the even (respectively odd) coefficients of u and v. We extract these coefficients as degree-14
binary polynomials, and the sum of both is the dot product of u and v over GF(2)[x]. Finally,
applying the modular reduction by the field polynomial allows to convert the result in GF(28).

For the sake of simplicity, we have presented the dot product for vectors of 8 elements. In
the optimized implementation, the previous process is extended to vectors of 16 elements, which
requires four calls to the PCLMULQDQ instruction. We recall that this instruction allows to choose
between the 64-bit lower and higher parts of each 128-bit operand.

We perform the dot product of vectors of n elements by applying the previous process on each
128-bit block. All products are accumulated in pe and po, in function of the position of the null
coefficients. Finally, the extraction step followed by the modular reduction by the field polynomial
is performed only one time, at the end of the algorithm.

When the same vector u is used for several dot products, we reverse only one time the order of
16-bit blocks of this vector. We sometimes precompute u′e and u′o for accelerating the dot product,
in particular when we multiply a vector by a matrix stored in the column-major order (e.g. P1T

i
and OT).

We note that the standard way of efficiently computing the dot product over GF(256) requires
the use of the tower field representation of GF(256). With this representation, the dot product
can be computed by block of 32 elements with logarithm and exponential tables. The tower field
representation could be considered in the future, and we refer to [Ryc21, Section 7.4.9] for further
details about parallel multiplications. However, our current representation of GF(256) could be
more efficient for other architectures, in particular if they have an instruction computing several
8-bit carry-less multiplications in parallel. For example, the PMULL instruction of the Arm Neon
architecture extension performs eight 8-bit carry-less multiplications in parallel. We also note that
on advanced Intel processors, the GFNI instruction set performs field multiplications in parallel
only for our representation of GF(256). Finally, we note that if the VPCLMULQDQ is available,
then our dot product algorithm can be extended to 512-bit registers, dividing by 4 the number of
calls to a carry-less multiplication instruction.

4.1.4 Multiplication of a vector by a scalar over GF(256)

The multiplication of a vector by a scalar is the fundamental operation of the optimized implemen-
tation. We use it to perform the vector-matrix products, matrix multiplications, and elimination
steps by the pivot row during the Gauss-Jordan algorithm. The crucial instruction to efficiently
perform this multiplication is VPSHUFB from the AVX2 instruction set, which performs two times
the PSHUFB instruction in parallel. The PSHUFB instruction from the SSSE3 instruction set takes
sixteen indices on four bits, and looks up the corresponding 8-bit elements in a 16-byte lookup
table. In fact, each index is on eight bits, but only the four lower bits are considered. However, if
the highest bit is set, then the corresponding output will be null.

23



We multiply a vector by a scalar by using multiplication lookup tables coupled to the VP-
SHUFB instruction. The VPSHUFB instruction is used twice: one time for multiplying the 4 lower
bits of each element of the vector by the scalar, and one time for multiplying the 4 higher bits. For
any scalar λ in GF(256), this fact implies to load two tables: a table of multiplication by λ, and
another table of multiplication by λ× β4, where β4 is the element of the basis of GF(256) whose
multiplication is equivalent to left shift by 4 positions (e.g. β4 = x4 in the polynomial basis). So,
the optimized implementation provides a lookup table T of size 256× 32 = 8192 bytes. For each
element of GF(256), we store both 16-byte lookup tables. Thus, both tables can be loaded with
one call to the load instruction, then we extend each table to 32-byte registers via the VPERMQ
instruction.

When the scalar is public, we directly load both tables by using the scalar as index of T. Other-
wise, the optimized implementation provides another lookup table Tx of size 8× 32 = 256 bytes.
This table is a smaller version of T which only contains the multiplication tables by the elements
of the basis of GF(256) (e.g. 1, x, x2, x3, x4, x5, x6, x7 in the polynomial basis). In this way, we can
generate T[λ] as the linear combination of Tx by the bits of λ. We present some constant-time
techniques for multiplying the 8 bits of λ by the 32-byte elements of Tx. For all techniques, λ has
to be duplicated 32 times in order to fill a 32-byte register.

Most methods are based on creating a 256-bit mask with each bit of λ, then applying this mask
on Tx with a logical AND. The performance of each method is target dependent. Therefore, a
tuning should be performed in order to select the best method for the current processor.

If we start by shifting the i-th bit of λ to the most significant bit for 0 6 i < 7 (the 7-th bit is
already the most significant bit), there are several strategies:

• Use the VPSHUFB instruction with the negation of zero as lookup table. This method re-
quires considering the negation of the previous result before applying the final logical AND.
This final step can directly be performed with the VPANDN instruction.

• Use the arithmetic right shift (VPSRAW).

• Perform the 16-bit vector signed higher multiplication with one (VPMULHW).

• Look if zero is strictly greater than the data (VPCMPGTB).

These strategies require at most one extra mask. Otherwise, if we allow a larger number of masks,
we can also start by setting to zero all bits except the i-th bit (via a logical AND). When i = 7, using
the previous techniques is faster because the i-th bit is directly duplicated in one instruction. Here
are some possible strategies for duplicating the i-th bit, mainly useful for i < 7:

• Perform the 16-bit vector signed higher multiplication with the negation of zero (VPMULHW).

• Look if the data is equal to zero (VPCMPEQB). This method requires considering the nega-
tion of the previous result before applying the final logical AND. This final step can directly
be performed with the VPANDN instruction.

• Look if the data is equal to the mask which has extracted the bit (VPCMPEQB).

• Look if the data is strictly greater than zero (VPCMPGTB), for i < 7. Look if zero is strictly
greater than the data, for i = 7.
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In [BCH+23, Figure 2], the authors propose to slightly modify the last method in order to decrease
the number of masks. First, shift λ to the right by one position. Second, for 0 6 i < 4, extract
the 2i-th bit of λ (respectively λ � 1) with a logical AND with the precomputed mask 22i, then
looks if the result is strictly greater than zero. Third, perform a logical AND of the previous result
with Tx[2i] (respectively Tx[2i + 1]). We note that the method of [BCH+23] can be improved. To
do it, we use a left shift instead of the right shift by one position, which implies to multiply by two
each precomputed mask. We also use 8-bit vector instructions instead of 16-bit vector instructions
(except the left shift). Then, for i = 3, we look if zero is strictly greater than the data. Thanks
to the left shift, the 6-th and 7-th bits of λ are at the most significant bit position, so no mask is
required. Our improvement is faster because we use only 14 logical AND versus 16 logical AND
for the original method. Most of Intel processors can perform three AND in parallel, so we save a
triplet. We also use three masks instead of four. We also can adapt this idea for the VPCMPEQB
instruction, which could be faster.

Another method proposed in [BCH+23] is to start by shifting the i-th bit of λ to the least
significant bit, then computing a logical AND with one, and finally computing the 16-bit vector
signed lower multiplication with Tx[i] (VPMULLW), for 0 6 i < 8. Once again, we note that this
method is faster if the most significant bit is directly duplicated in one instruction.

In Algorithm 8, we introduce a very efficient strategy based on VPSHUFB: we directly look
up the mask in a table. Here, the Tx table corresponds to mulxtab_x0_x4_gf256 in the optimized
implementation. The use of VPCMPGTB for the 7-th bit slightly speeds up the implementation.
The drawback of Algorithm 8 is the large number of registers, which is not recommended if it is
inlined in another function. If the function is inlined, then we recommend the use of the VPSHUFB
instruction with the negation of zero as lookup table, or sometimes the use of the arithmetic right
shift (VPSRAW).

Finally, when we need to generate the multiplication table for 16j scalars stored in j 16-byte reg-
isters for j > 1, the authors of [BCH+23] propose a method more efficient. We refer to [BCH+23,
Figure 3] for further details. In Algorithm 9, we propose a variant of this method which de-
creases the number of required registers. We successively use VPUNPCKLBW, VPUNPCKLWD
and VPUNPCKLDQ in the core loop of [BCH+23, Figure 3], in order to successively generate three
masks from another mask which is incremented at each iteration. The use of these instructions is
similar to the matrix transpose of the next section.

Algorithm 9 loads data by block of 32 bytes. Therefore, the memory zone allocated for u has
to be a multiple of 32 bytes, in particular when j is odd.

4.1.5 Computing the transpose of a square matrix over GF(256)

The keypair generation requires symmetrizing m square matrices in order to obtain an upper
triangular matrix. Let M ∈ F(m+δ)×(m+δ). To symmetrize M, we have to add the transpose of the
strictly lower triangular part of M to its upper triangular part. To do it, we decompose M into
square blocks of size 16× 16. Then, for each block of the lower triangular part of M, we compute
its transpose then we add it to the corresponding block in the upper triangular part. Here, we
explain how to efficiently perform this operation, via the SSE2 instruction set. However, we note
that the diagonal blocks require a different implementation since they contains both the lower and
upper triangular parts. Moreover, if m+ δ is not a multiple of 16, then we have to use a specific
implementation to transpose the last rows of M.
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Algorithm 8 AVX2 implementation in C programming language of T[u[i]] for 0 6 i < n.
1: void vec_to_mulTab_v1_gf256_avx2(uint8_t *T, const uint8_t *u, unsigned int n)

2: {
3: const __m256i x0=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256);

4: const __m256i x1=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+1);

5: const __m256i x2=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+2);

6: const __m256i x3=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+3);

7: const __m256i x4=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+4);

8: const __m256i x5=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+5);

9: const __m256i x6=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+6);

10: const __m256i x7=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+7);

11: const __m256i m_0f=_mm256_set1_epi8(15);

12: const __m256i m_ff00=_mm256_slli_epi16(~_mm256_setzero_si256(),8);

13: const __m256i m_ffff0000=_mm256_slli_epi32(~_mm256_setzero_si256(),16);

14: const __m256i m_ffffffff00000000=_mm256_slli_epi64(~_mm256_setzero_si256(),32);

15: const __m256i mh=_mm256_slli_si256(~_mm256_setzero_si256(),8);

16: __m256i u0,u1,r;

17: unsigned int i;

18: for(i=0;i<n;++i)

19: {

20: u0=_mm256_set1_epi8(u[i]);

21: r=_mm256_cmpgt_epi8(_mm256_setzero_si256(),u0)&x7;

22: u1=_mm256_srli_epi16(u0,4)&m_0f;

23: u0&=m_0f;

24: r^=_mm256_shuffle_epi8(m_ff00,u0)&x0;

25: r^=_mm256_shuffle_epi8(m_ff00,u1)&x4;

26: r^=_mm256_shuffle_epi8(m_ffff0000,u0)&x1;

27: r^=_mm256_shuffle_epi8(m_ffff0000,u1)&x5;

28: r^=_mm256_shuffle_epi8(m_ffffffff00000000,u0)&x2;

29: r^=_mm256_shuffle_epi8(m_ffffffff00000000,u1)&x6;

30: r^=_mm256_shuffle_epi8(mh,u0)&x3;

31: _mm256_storeu_si256((__m256i*)T+i,r);

32: }

33: }
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Algorithm 9 AVX2 implementation in C programming language of T[u[i]] for 0 6 i < n = 16j.
1: void vec_to_mulTab_gf256_avx2(uint8_t *T, const uint8_t *u, unsigned int n) {

2: const __m256i x0=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256);

3: const __m256i x1=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+1);

4: const __m256i x2=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+2);

5: const __m256i x3=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+3);

6: const __m256i x4=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+4);

7: const __m256i x5=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+5);

8: const __m256i x6=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+6);

9: const __m256i x7=_mm256_loadu_si256((__m256i*)mulxtab_x0_x4_gf256+7);

10: const __m256i mask_0f=_mm256_set1_epi8(15);

11: const __m256i c256=_mm256_set1_epi16(256);

12: __m256i u32,u0,u1,ul,u_x0_x4,u_x0,u_x1,u_x2,u_x3,mask,mask2;

13: unsigned int i,k,l;

14: for(i=0;i<(n>>4);i+=2) {

15: u32=_mm256_loadu_si256((__m256i*)u); /* 16-byte padding of u may be required */

16: u_x0_x4=_mm256_permute4x64_epi64(u32,0x44);

17: u32 =_mm256_permute4x64_epi64(u32,0xee);

18: for(k=0;k<2;++k) {

19: u0=u_x0_x4&mask_0f;

20: u1=_mm256_srli_epi16(u_x0_x4,4)&mask_0f;

21: u_x0=_mm256_shuffle_epi8(x0,u0)^_mm256_shuffle_epi8(x4,u1);

22: u_x1=_mm256_shuffle_epi8(x1,u0)^_mm256_shuffle_epi8(x5,u1);

23: u_x2=_mm256_shuffle_epi8(x2,u0)^_mm256_shuffle_epi8(x6,u1);

24: u_x3=_mm256_shuffle_epi8(x3,u0)^_mm256_shuffle_epi8(x7,u1);

25: /* l 0xf0 l 0xf0 l 0xf0 l 0xf0 l 0xf0 l 0xf0 l 0xf0 l 0xf0 */

26: mask=_mm256_srli_epi16(mask_0f,4);

27: for(l=0;l<16;++l) {

28: ul =_mm256_shuffle_epi8(u_x0,mask);

29: /* l l 0xf0 0xf0 l l 0xf0 0xf0 l l 0xf0 0xf0 l l 0xf0 0xf0 */

30: mask2=_mm256_unpacklo_epi8(mask,mask);

31: ul^=_mm256_shuffle_epi8(u_x1,mask2);

32: /* l l l l 0xf0 0xf0 0xf0 0xf0 l l l l 0xf0 0xf0 0xf0 0xf0 */

33: mask2=_mm256_unpacklo_epi16(mask2,mask2);

34: ul^=_mm256_shuffle_epi8(u_x2,mask2);

35: /* l l l l l l l l 0xf0 0xf0 0xf0 0xf0 0xf0 0xf0 0xf0 0xf0 */

36: mask2=_mm256_unpacklo_epi32(mask2,mask2);

37: ul^=_mm256_shuffle_epi8(u_x3,mask2);

38: _mm256_storeu_si256((__m256i*)T,ul);

39: /* l+1 f0 l+1 f0 l+1 f0 l+1 f0 l+1 f0 l+1 f0 l+1 f0 l+1 f0 */

40: mask=_mm256_add_epi16(mask,c256);

41: T+=32;

42: } u+=16;

43: if((i+1+k)==(n>>4)) break;

44: u_x0_x4=u32;

45: }}}
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First, we transpose a block of size 8× 16 as follows. We load the eight rows of this block, which
generates eight 128-bit registers. Then we apply PUNPCKLBW and PUNPCKHBW on the four
couples of successive rows, in order to obtain the transpose of four blocks of size 2× 16, stored on
two 128-bit registers. Now, we repeat this process by applying PUNPCKLWD and PUNPCKHWD
on both couples of transpose of blocks of size 2× 16. We obtain two transposes of blocks of size
4 × 16 stored on four 128-bit registers. We repeat this process by applying PUNPCKLDQ and
PUNPCKHDQ on the couple of transpose of blocks of size 4× 16. Then, we obtain the transpose
of a block of size 8× 16 stored on eight 128-bit registers.

Second, we transpose a square block of size 16× 16 as follows. We load the first eight rows
of this block, and via the previous process, we obtain its transpose. We could repeat this process
for the last eight rows, then apply PUNPCKLQDQ and PUNPCKHQDQ, but we think that the
numbers of required registers would be too large. So, we split each of the eight registers in two
64-bit data with a 64-bit zero padding, via PSLLDQ and PSRLDQ. Then, we load the 16 rows of
the corresponding block of the upper triangular part of M and we update them, i.e. we xor them to
the 64-bit data and we store the results in-place on this block. Note that we do not directly load the
16 rows, but we progressively update the block row by row, in order to use less than sixteen 128-
bit registers. Now, we repeat this process with the last eight rows of the square block, achieving
the process of adding the transpose of the block of the lower triangular part to the corresponding
block of the upper triangular part.

Once M is symmetrized, we load all rows of the upper triangular part and we store them in a
new memory zone, in order to store a compact version of the upper triangular matrix (i.e. without
storing the null elements of the strictly lower triangular part). This transformation is implemented
with the AVX2 instruction set (although the AVX instruction set is enough to do it).

For certain implementations of PROV, we could consider to perform the transpose of P1
i or

O in the row-major order. The process of adding the transpose of the strictly lower triangular
part of M to its upper triangular part can easily be modified to perform the transpose of a matrix.
However, we recommend to be careful if this operation is performed in-place, in particular for
rectangular matrices.

4.1.6 Constant-time Gauss-Jordan elimination over GF(256)

During the signing process, we have to solve a linear system of m equations in m+ δ variables
over GF(256). In [BCH+23, Algorithm 2], the authors use a constant-time Gaussian elimination to
solve a square linear system, and abort the process as soon as no pivot is found, i.e. if the solution
does not exist or is not unique. Therefore, we extend this algorithm to solve overdetermined
system. This leads to propose a constant-time Gauss-Jordan elimination (i.e. the row echelon form
is reduced), because we cannot know if the elimination step is performed with zero or a non-zero
pivot without generating a leakage of this information.

Let A ∈ Fm×(m+δ+1) be the augmented matrix associated to the system, and i be the position
of the pivot row during the algorithm, initialized to zero. For 0 6 j < m+ δ, we use the pivot row
for eliminating the coefficients of the j-column of A. To do it, there are several steps.

1. We need to create a non-zero pivot. So, we start by creating a null row L, corresponding to
the i-th row of A if i < m. For 0 6 k < m, we add the k-th row of A to L if and only if:

• k > i, in order not to use the pivot rows of the previous iterations,
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• we cannot find A`,j 6= 0 such that ` < k and k > i.

These conditional statements are implemented in constant-time with several masks. Note
that if i < m, then the i-th row of A is necessarily added to L.

2. If we have found a non-zero pivot, then we multiply L by the inverse of the pivot. Else, we
multiply L by any non-zero element of GF(256), in order not to change the solutions.

3. We use L for eliminating all rows of A.

4. We replace the i-th row of A by L. Here, we know that i 6 min(j,m− 1). Therefore, for
0 6 k 6 min(j,m− 1), we use a conditional store which erases the k-th row of A by itself if
k 6= i, or by L otherwise.

5. We increment i if and only if a non-zero pivot was found.

Finally, we look if the system is consistent. For 0 6 i < m, we perform the logical OR between all
elements of the i-th row of A such that the index of the column is greater or equal to i (note that
the other coefficients are necessarily null), and different from m+ δ. Then we generate an integer
whose sign bit is one if and only if the previous result is zero and Ai,m+δ 6= 0. Finally, we perform
the logical OR between all integers, and the sign bit is zero if and only if the system is consistent.

We note that with the AVX2 instruction set, the logical OR between the elements of the rows of
A is performed on 256-bit registers. So the result is accumulated in a 256-bit register, but we need
to know if at least one of the bytes is not zero. However, we note that the i-th row of A (without its
last coefficient) is not null if and only if there exists an element set to one. For our representation
of GF(256), this is equivalent to having an odd byte. Therefore, we shift the least significant bit of
each byte of the accumulator to the most significant bit, then we use the VPMOVMSKB instruction
which generates a 32-bit mask from the most significant bit of each byte, and finally we look if this
mask is null.

4.1.7 Constant-time backward substitution over GF(256)

In this section, we assume that the augmented matrix A ∈ Fm×(m+δ+1) is in row echelon form such
that the pivot is one for non-zero rows. Moreover, we assume that the solution vector is initialized
with the choice of free variables. Here, we assume that the field element zero is the null byte, and
the field element one is an odd byte.

For i from m− 1 to 0, we perform the dot product of the i-th row of A with the current solu-
tion vector, by starting to the i-th position because previous coefficients are necessarily null. We
compute the XOR of the previous result and Ai,m+δ, and we obtain d ∈ GF(256). Then, we have
to update the variable. To do it, we initialize a mask M to the negation of zero, and we search
the first non-zero element of the i-th row. For j from i to m+ δ− 1, we generate a mask Mj from
Ai,j. This mask is zero for a null value, and is the negation of zero otherwise. While we find a
null element, Mj is set to zero and we xor (Mj AND M AND d) to xj, which does not modify its
value. When the first non-zero element is found at the position j, we xor (Mj AND M AND d) to
xj, which replaces the free variable by the solution variable. As soon as xj is found and updated,
we set the mask M to zero. Thus, the future XOR instructions will not change the solution vector.

In the optimized implementation, we apply the previous process by taking 8 elements at each
step, i.e. a 64-bit data D. To generate eight successive values of Mj in parallel, we use the BLSI
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instruction which extracts the lowest set bit of D, then we generate a 8-bit mask with this bit. This
strategy assumes that the pivot is an odd byte, in order to the lowest set bit found by BLSI is the
pivot. The BLSI instruction is not necessary to find the lowest set bit, because we can also find it
by computing D AND −D. Unfortunately, this strategy cannot be efficiently extended to the SSE2
instruction set, because the computation of −D cannot be directly performed on 128-bit. About
the field element d, we duplicate it on 64-bit by multiplying it by 0x101010101010101.

4.1.8 Making the implementation faster for the processor

In the optimized implementation, many algorithms perform operations on matrix rows then ac-
cumulate them. The accumulator has the size of the largest row. Our implementation uses the
AVX2 instruction set, so the accumulator is a small number of 256-bit registers. When the size of
the rows is decreasing during an algorithm, e.g. during the Gauss-Jordan elimination, or during
vector-matrix products where the matrix is triangular, we specialize the implementation in func-
tion of the number of required 256-bit registers. As soon as a register becomes useless, a version
of the code without this register is executed.

Then, when the number of registers is small, the potential of the processor is not totally ex-
ploited, because the number of identical instructions is small. Therefore, for the vector-matrix
products of the signing and verifying processes, we specialize the implementation to perform the
product of a vector by two matrices. In this way, the multiplication table of the vector is loaded
only one time, and we double the number of identical instructions. The Intel’s processors can
perform two instructions in parallel for a large number of instructions. We note that this strategy
is more efficient than unrolling the for loops.

Finally, during the Gauss-Jordan elimination (Section 4.1.6), the memory zone allocated for
each row of the augmented matrix is a multiple of 32 bytes. In this way, each row can be loaded
as a small number of 256-bit registers, modified then stored without changing the other rows.

4.2 Performance results

Table 5 presents the performance of PROV in its default mode, using the compact secret key. Ta-
ble 6 presents the performance when using an expanded secret key. The expanded secret key is
much larger (See Section 2.7), but allows for faster signatures when storing an expanded key is
acceptable. Table 7 presents the performance when using an expanded secret key, but we also
store {P1

i }i=1,...,m and O in the expanded secret-key, and {P1
i }i=1,...,m, {P2

i }i=1,...,m in the public-key.
In particular, we consider the computation of a large number of signatures or verifications with
the same keys. All results are benchmarked using the optimized AVX2 implementation available
on the PROV website. The platform and methodology are presented in Section 4.2.1.

Variant KeyGen Sign Verify
PROV-I 4.41 Mc 0.488 Mc 0.196 Mc
PROV-III 16.4 Mc 1.34 Mc 0.616 Mc
PROV-V 47.5 Mc 2.81 Mc 1.40 Mc

Table 5: Performance of PROV in megacycles, measured with the setup in Section 4.2.1.
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Variant Exp. KeyGen Exp. Sign Verify
PROV-I 5.81 Mc 0.197 Mc 0.196 Mc
PROV-III 22.6 Mc 0.550 Mc 0.616 Mc
PROV-V 64.2 Mc 1.17 Mc 1.40 Mc

Table 6: Performance of PROV in megacycles, using an expanded secret key, measured with the
setup in Section 4.2.1.

Variant Exp. KeyGen Exp. Sign Exp. Verify
PROV-I 5.81 Mc 0.150 Mc 0.0902 Mc
PROV-III 22.6 Mc 0.398 Mc 0.281 Mc
PROV-V 64.2 Mc 0.822 Mc 0.649 Mc

Table 7: Performance of PROV in megacycles, using an expanded secret key and the precomputa-
tion of {P1

i }i=1,...,m, {P2
i }i=1,...,m and O, measured with the setup in Section 4.2.1.

4.2.1 Platform and benchmarking methodology

computer processor cores frequency max freq. architecture
cryptodome Intel Core i3-8100 CPU 4 3.6 GHz 3.6 GHz Coffee Lake

Table 8: Processor.

computer operating system L1d L1i L2 L3 RAM
cryptodome Ubuntu 20.04.6 LTS 32 KiB 32 KiB 256 KiB 6 MiB 4 GB

Table 9: OS and memory. All cores have the same cache size. The L3 cache is shared.

Tables 8 and 9 summarize the main information about the platform used in the experimental
measurements. The measurements used one core of the CPU, and the C code was compiled with
gcc -O2 -maes -mavx2 -mpclmul -mbmi. We used the version 10.5.0 of GCC. Turbo Boost is
not used since it is not available. The XKCP (Extended Keccak Code Package) was generated
with make Haswell/libkeccak.a, enabling the AVX2 instruction set for SHAKE256. We note that
the version of XKCP is old. It was downloaded before 2021. This version is provided with the
optimized implementation.

For each cryptographic operation of PROV, we run a number of tests such that the elapsed
time is greater than 4 seconds, and this time is divided by the number of tests. The signing and
verifying processes of PROV were benchmarked with 256 different documents of 32 bytes.

5 Advantages and limitations

5.1 Advantages

Simplicity. Like most UOV-based signature schemes, PROV has a very simple design that is both
easy to understand and to implement. Indeed, the only operations that are required in order to
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generate and verify a signature are matrix multiplications and solving linear systems of equations
over the finite field F.

Provable security. PROV can be proven secure both in the ROM and the QROM, under the as-
sumption that the UOV- problem is hard to solve. Moreover, this hardness assumption has been
well-studied since the publication of UOV in [KPG99].

It is worth noting that distinguishing a PROV system with from a uniformly random system
of equations is strictly harder than distinguishing a corresponding UOV cryptosystem with with
m equations in n+ δ variables. Indeed, the attacks has access to strictly less information (due to δ

missing equations). This point is valid in practice: our parameter sets are expected to resist attacks
even if the number of equations was increased to m+ δ.

Short signatures. As is often the case in multivariate cryptography (see e.g.[Beu22, BCH+23,
FIKT21]), one of the main selling points of PROV is its small signature size. This is especially
true when compared to MPC-in-the-head schemes that are directly based on the Multivariate
Quadratic problem whose signatures are larger than 10KB for a security level of 128 bits (see
e.g. [CHR+16, Beu20]).

5.2 Limitations

Key sizes. Like most other multivariate schemes, the main limitation of PROV is its relatively
large public key and expanded secret key size. Moreover, in order to provide a meaningful secu-
rity proof, we had to increase the dimension of the oil space. Hence, this also lead to a correspond-
ing increase in the number of vinegar variables, which increased both the signature size and the
public key sizes when compared with other constructions based on UOV such as [BCH+23].

6 Update history

• June 2023: PROV version 1.0 is submitted to the NIST selection process.

• February 2024: PROV version 1.1 is published. This version corrects an error in the specifi-
cation of the original 1.0 version, where the secret key seed was not included in the input to
the hash function when generating the vinegar vector during signing. The mistake was no-
ticed by River Moreira Ferreira and Ludovic Perret, who showed that it could be exploited
to break the scheme. It was also known to the authors, and was scheduled to be corrected
in the next version of PROV. In the interest of time, it was eventually decided to release it
as a separate update, which constitutes PROV version 1.1. The authors would like to ex-
press their gratitude to River Moreira Ferreira and Ludovic Perret, who communicated their
findings to us transparently.

• April 2024: PROV version 1.2 is published. This new update brings several new features.

1. Section 3: new proof techniques based on [CFGM24], which yield sharper security
bounds.
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2. Section 4: new optimized implementation for AVX2, together with an in-depth discus-
sion of implementation with the AVX2 instruction set. The new implementation results
in vastly better performance (Section 4.2).

3. Section 2.7: slightly larger parameters to properly account for the computational target
of 2128 (resp. 2192, 2256) AES computation-equivalents, rather than the same number of
basic operations, as required by the NIST call.

Beside the above features, PROV 1.2 makes a few low-level modifications to the specifica-
tion, in order to achieve better performance. In particular using AES in place of SHAKE for
seed expansion results in a large performance boost. The core PROV design is otherwise
unchanged.
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